4000-520-616
欢迎来到免疫在线!(蚂蚁淘生物旗下平台)  请登录 |  免费注册 |  询价篮
gembio(授权代理)
主营:主营:血清、培养基
咨询热线电话
4000-520-616
当前位置: 首页 > 新闻动态 >
新闻详情
QSAR-Driven Discovery of Novel Chemical Scaffolds Active...
来自 : 发布时间:2024-05-17
J. Chem. Inf. Model.All Publications/WebsiteOR SEARCH CITATIONS Recently ViewedYou have not visited any articles yet, Please visit some articles to see contents here. RETURN TO ISSUEPREVArticleNEXTQSAR-Driven Discovery of Novel Chemical Scaffolds Active against Schistosoma mansoniCleber C. Melo-Filho†,Rafael F. Dantas‡,Rodolpho C. Braga†,Bruno J. Neves†,Mario R. Senger‡,Walter C. G. Valente‡,João M. Rezende-Neto‡,Willian T. Chaves‡,Eugene N. Muratov§∥,Ross A. Paveley⊥,Nicholas Furnham⊥,Lee Kamentsky#,Anne E. Carpenter#,Floriano P. Silva-Junior*‡,andCarolina H. Andrade*†View Author Information† LabMol−Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Rua 240, Qd.87, Goiania, GO 74605-510, Brazil‡ Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil§ Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States∥ Department of Chemical Technology, Odessa National Polytechnic University, 1. Shevchenko Ave., Odessa, 65000, Ukraine⊥ Department of Pathogen Molecular Biology Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom# Imaging Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, United States*Tel.: + 55 21 3865 8248. Fax: +55 21 2590 3495. E-mail: [email protected]*Tel.: + 55 62 3209 6451. Fax: +55 62 3209 6037. E-mail: [email protected]Cite this: J. Chem. Inf. Model. 2016, 56, 7, 1357–1372Publication Date (Web):June 2, 2016Publication History Received3 February 2016Published online16 June 2016Published inissue 25 July 2016https://doi.org/10.1021/acs.jcim.6b00055Copyright © 2016 American Chemical SocietyRIGHTS & PERMISSIONSArticle Views806Altmetric-Citations33LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.Get e-AlertsAbstractSchistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure–activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents.Supporting InformationARTICLE SECTIONSJump ToThe Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jcim.6b00055.Statistical characteristics for the three best HQSAR models obtained using different combinations of fragment distinction, fragment size, and hologram length (Table S1). Experimental and predicted potencies (pIC50) for the test set compounds using the best HQSAR, CoMFA, and CoMSIA models (Table S2). Best CoMFA models obtained using different charge-assigning and alignment methods (Table S3). Best CoMSIA models generated using different charge-assigning and alignment methods (Table S4). Chemical structures and predicted biological activities (pIC50 and IC50) using the best consensus QSAR model for the lead compound (33) and the identified hits (Table S5). Experimental versus predicted biological activity of the best HQSAR (A); CoMFA (B); and CoMSIA (C) models (Figure S1) (PDF)ci6b00055_si_001.pdf (476.25 kb) Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html. Cited ByThis article is cited by 33 publications.ViniciusM. Alves, Alexander Golbraikh, Stephen J. Capuzzi, Kammy Liu, Wai In Lam, Daniel Robert Korn, Diane Pozefsky, Carolina Horta Andrade, Eugene N. Muratov, Alexander Tropsha. Multi-Descriptor Read Across (MuDRA): A Simple and Transparent Approach for Developing Accurate Quantitative Structure–Activity Relationship Models. Journal of Chemical Information and Modeling 2018, 58 , 1214-1223. https://doi.org/10.1021/acs.jcim.8b00124Bruno J. Neves, Rafael F. Dantas, Mario R. Senger, Cleber C. Melo-Filho, Walter C. G. Valente, Ana C. M. de Almeida, João M. Rezende-Neto, Elid F. C. Lima, Ross Paveley, Nicholas Furnham, Eugene Muratov, Lee Kamentsky, Anne E. Carpenter, Rodolpho C. Braga, Floriano P. Silva-Junior, and Carolina Horta Andrade . Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. Journal of Medicinal Chemistry 2016, 59 (15) , 7075-7088. https://doi.org/10.1021/acs.jmedchem.5b02038José T. Moreira-Filho, Arthur C. Silva, Rafael F. Dantas, Barbara F. Gomes, Lauro R. Souza Neto, Jose Brandao-Neto, Raymond J. Owens, Nicholas Furnham, Bruno J. Neves, Floriano P. Silva-Junior, Carolina H. Andrade. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.642383Letícia Tiburcio Ferreira, Joyce V. B. Borba, José Teófilo Moreira-Filho, Aline Rimoldi, Carolina Horta Andrade, Fabio Trindade Maranhão Costa. QSAR-Based Virtual Screening of Natural Products Database for Identification of Potent Antimalarial Hits. Biomolecules 2021, 11 , 459. https://doi.org/10.3390/biom11030459Steven Chen, Brian M. Suzuki, Jakob Dohrmann, Rahul Singh, Michelle R. Arkin, Conor R. Caffrey. A multi-dimensional, time-lapse, high content screening platform applied to schistosomiasis drug discovery. Communications Biology 2020, 3 https://doi.org/10.1038/s42003-020-01402-5Vaida Milišiūnaitė, Alena Kadlecová, Asta Žukauskaitė, Karel Doležal, Miroslav Strnad, Jiří Voller, Eglė Arbačiauskienė, Wolfgang Holzer, Algirdas Šačkus. Synthesis and anthelmintic activity of benzopyrano[2,3-c]pyrazol-4(2H)-one derivatives. Molecular Diversity 2020, 24 , 1025-1042. https://doi.org/10.1007/s11030-019-10010-3Patnala Ganga Raju Achary. Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review. Mini-Reviews in Medicinal Chemistry 2020, 20 (14) , 1375-1388. https://doi.org/10.2174/1389557520666200429102334Bruno J. Neves, Rodolpho C. Braga, Vinicius M. Alves, Marília N. N. Lima, Gustavo C. Cassiano, Eugene N. Muratov, Fabio T. M. Costa, Carolina Horta Andrade, . Deep Learning-driven research for drug discovery: Tackling Malaria. PLOS Computational Biology 2020, 16 , e1007025. https://doi.org/10.1371/journal.pcbi.1007025Long Jiao, Yuan Wang, Le Qu, Zhiwei Xue, Yiqing Ge, Huanhuan Liu, Bin Lei, Qian Gao, Mengke Li. Hologram QSAR study on the critical micelle concentration of Gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 586 , 124226. https://doi.org/10.1016/j.colsurfa.2019.124226Anthony J. Hickey, Hugh D. C. Smyth. Computational Modeling of Nonlinear Phenomena Using Machine Learning. 2020,,, 53-62. https://doi.org/10.1007/978-3-030-42783-2_7Carolina Horta Andrade, Bruno Junior Neves, Cleber Camilo Melo-Filho, Juliana Rodrigues, Diego Cabral Silva, Rodolpho Campos Braga, Pedro Vitor Lemos Cravo. In Silico Chemogenomics Drug Repositioning Strategies for Neglected Tropical Diseases. Current Medicinal Chemistry 2019, 26 (23) , 4355-4379. https://doi.org/10.2174/0929867325666180309114824Jonathan Cardoso-Silva, Lazaros G. Papageorgiou, Sophia Tsoka. Network-based piecewise linear regression for QSAR modelling. Journal of Computer-Aided Molecular Design 2019, 33 , 831-844. https://doi.org/10.1007/s10822-019-00228-6Jonathan Cardoso‐Silva, George Papadatos, Lazaros G. Papageorgiou, Sophia Tsoka. Optimal Piecewise Linear Regression Algorithm for QSAR Modelling. Molecular Informatics 2019, 38 , 1800028. https://doi.org/10.1002/minf.201800028Cleber C. Melo-Filho, Rodolpho C. Braga, Eugene N. Muratov, Caio Haddad Franco, Carolina B. Moraes, Lucio H. Freitas-Junior, Carolina Horta Andrade. Discovery of new potent hits against intracellular Trypanosoma cruzi by QSAR-based virtual screening. European Journal of Medicinal Chemistry 2019, 163 , 649-659. https://doi.org/10.1016/j.ejmech.2018.11.062Fernando D. Prieto-Martínez, Edgar López-López, K. Eurídice Juárez-Mercado, José L. Medina-Franco. Computational Drug Design Methods—Current and Future Perspectives. 2019,,, 19-44. https://doi.org/10.1016/B978-0-12-816125-8.00002-XChristopher Fernández-Prada, Noelie Douanne, Aida Minguez-Menendez, Joan Pena, Luiza G. Tunes, Douglas E.V. Pires, Rubens L. Monte-Neto. Repurposed Molecules: A New Hope in Tackling Neglected Infectious Diseases. 2019,,, 119-160. https://doi.org/10.1016/B978-0-12-816125-8.00005-5Sandra Gemma, Stefano Federico, Simone Brogi, Margherita Brindisi, Stefania Butini, Giuseppe Campiani. Dealing with schistosomiasis: Current drug discovery strategies. 2019,,, 107-138. https://doi.org/10.1016/bs.armc.2019.06.002José T. Moreira-Filho, Rafael F. Dantas, Mário R. Senger, Arthur C. Silva, Dulcinea M.B. Campos, Eugene Muratov, Floriano P. Silva-Junior, Carolina H. Andrade, Bruno J. Neves. Shortcuts to schistosomiasis drug discovery: The state-of-the-art. 2019,,, 139-180. https://doi.org/10.1016/bs.armc.2019.06.004Bruno J. Neves, Rodolpho C. Braga, Cleber C. Melo-Filho, José Teófilo Moreira-Filho, Eugene N. Muratov, Carolina Horta Andrade. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.01275Sandra Giuliani, Arthur C. Silva, Joyce V. V. B. Borba, Pablo I. P. Ramos, Ross A. Paveley, Eugene N. Muratov, Carolina Horta Andrade, Nicholas Furnham, . Computationally-guided drug repurposing enables the discovery of kinase targets and inhibitors as new schistosomicidal agents. PLOS Computational Biology 2018, 14 (10) , e1006515. https://doi.org/10.1371/journal.pcbi.1006515Ahmad F. Eweas, Gamal Allam. Targeting thioredoxin glutathione reductase as a potential antischistosomal drug target. Molecular and Biochemical Parasitology 2018, 225 , 94-102. https://doi.org/10.1016/j.molbiopara.2018.09.004Prabodh Ranjan, Mohd Athar, Prakash Chandra Jha, Kari Vijaya Krishna. Probing the opportunities for designing anthelmintic leads by sub-structural topology-based QSAR modelling. Molecular Diversity 2018, 22 , 669-683. https://doi.org/10.1007/s11030-018-9825-4Jefferson A. Rocha, Nayra C. S. Rego, Bruna T. S. Carvalho, Francisco I. Silva, Jose A. Sousa, Ricardo M. Ramos, Ionara N. G. Passos, Josué de Moraes, Jose R. S. A. Leite, Francisco C. A. Lima, . Computational quantum chemistry, molecular docking, and ADMET predictions of imidazole alkaloids of Pilocarpus microphyllus with schistosomicidal properties. PLOS ONE 2018, 13 , e0198476. https://doi.org/10.1371/journal.pone.0198476Parismita Kalita, Harish Shukla, Rohit Shukla, Timir Tripathi. Biochemical and thermodynamic comparison of the selenocysteine containing and non-containing thioredoxin glutathione reductase of Fasciola gigantica. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 , 1306-1316. https://doi.org/10.1016/j.bbagen.2018.03.007Rohit Shukla, Harish Shukla, Parismita Kalita, Timir Tripathi. Structural insights into natural compounds as inhibitors of Fasciola gigantica thioredoxin glutathione reductase. Journal of Cellular Biochemistry 2018, 119 , 3067-3080. https://doi.org/10.1002/jcb.26444Marilia N. N. Lima, Cleber C. Melo-Filho, Gustavo C. Cassiano, Bruno J. Neves, Vinicius M. Alves, Rodolpho C. Braga, Pedro V. L. Cravo, Eugene N. Muratov, Juliana Calit, Daniel Y. Bargieri, Fabio T. M. Costa, Carolina H. Andrade. QSAR-Driven Design and Discovery of Novel Compounds With Antiplasmodial and Transmission Blocking Activities. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00146Rodolfo S. Simões, Vinicius G. Maltarollo, Patricia R. Oliveira, Kathia M. Honorio. Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00074Marcelo T de Oliveira, Edson Katekawa. On the virtues of automated quantitative structure–activity relationship: the new kid on the block. Future Medicinal Chemistry 2018, 10 , 335-342. https://doi.org/10.4155/fmc-2017-0170Melina Mottin, Joyce Villa Verde Bastos Borba, Cleber Camilo Melo-Filho, Bruno Junior Neves, Eugene Muratov, Pedro Henrique Monteiro Torres, Rodolpho Campos Braga, Alexander Perryman, Sean Ekins, Carolina Horta Andrade. Computational drug discovery for the Zika virus. Brazilian Journal of Pharmaceutical Sciences 2018, 54 (spe) https://doi.org/10.1590/s2175-97902018000001002Vinicius G Maltarollo, Thales Kronenberger, Carsten Wrenger, Kathia M Honorio. Current trends in quantitative structure–activity relationship validation and applications on drug discovery. Future Science OA 2017, 3 , FSO214. https://doi.org/10.4155/fsoa-2017-0052Marcelo Gomes, Eugene Muratov, Maristela Pereira, Josana Peixoto, Lucimar Rosseto, Pedro Cravo, Carolina Andrade, Bruno Neves. Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules 2017, 22 , 1210. https://doi.org/10.3390/molecules22081210Thiago José Matos-Rocha, Maria do Carmo Alves de Lima, Anekécia Lauro da Silva, Jamerson Ferreira de Oliveira, Allana Lemos Andrade Gouveia, Vinícius Barros Ribeiro da Silva, Antônio Sérgio Alves de Almeida Júnior, Fábio André Brayner, Pablo Ramon Gualberto Cardoso, Marina da Rocha Pitta-Galdino, Ivan da Rocha Pitta, Moacyr Jesus Barreto de Melo Rêgo, Luiz Carlos Alves, Maira Galdino da Rocha Pitta. Synthesis and biological evaluation of novel imidazolidine derivatives as candidates to schistosomicidal agents. Revista do Instituto de Medicina Tropical de São Paulo 2017, 59 https://doi.org/10.1590/s1678-9946201759008Chonny Herrera Acevedo, Luciana Scotti, Mateus Feitosa Alves, Margareth Formiga Melo Diniz, Marcus Scotti. Computer-Aided Drug Design Using Sesquiterpene Lactones as Sources of New Structures with Potential Activity against Infectious Neglected Diseases. Molecules 2017, 22 , 79. https://doi.org/10.3390/molecules22010079Export articles to MendeleyGet article recommendations from ACS based on references in your Mendeley library.Export articles to MendeleyGet article recommendations from ACS based on references in your Mendeley library. Please note: If you switch to a different device, you may be asked to login again with only your ACS ID. Please note: If you switch to a different device, you may be asked to login again with only your ACS ID. Please note: If you switch to a different device, you may be asked to login again with only your ACS ID. Please login with your ACS ID before connecting to your Mendeley account.Login with ACS ID This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy. CONTINUE

本文链接: http://gemini.immuno-online.com/view-257731232.html

发布于 : 2024-05-17 阅读()